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Fractional Brownian motion with zero Hurst parameter

Fractional Brownian motion

1. A fBm (BH
t )t∈R with Hurst parameter H ∈ (0, 1) is a zero-

mean Gaussian process with covariance kernel given by

E[BH
t B

H
s ] = 1

2
(
|t|2H + |s|2H − |t− s|2H

)
.

2. It has stationary increments and is self-similar with parameter
H, that is (BH

at)t∈R has the same law as (aHBH
t )t∈R for any

a > 0.
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Fractional Brownian motion

3. Sample paths of fBm have almost surely Hölder regularity
H − ε for any ε > 0.

4. Long memory property of the increments when H > 1/2.
This means that for H > 1/2, we have

+∞∑
i=1

Cov[(BH
i+1 −BH

i ), BH
1 ] = +∞,

which is useful for modeling persistent phenomena.
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Applications of Fractional Brownian motion

Fractional Brownian motion is a very popular modeling object in
many fields:

• Hydrology, see for example Molz, Liu, Szulga (1997),

• Telecommunications and network traffic: Leland et al. (1994),
Mikosch et al. (2002).

• Finance, seminal paper by Comte and Renault (1998).
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Rough-Volatility Models in Finance

1. Recently, Gatheral et al. (2014) performed a careful analysis
of financial time series.

2. They suggested that the log-volatility process behaves like
a fBm with H ≈ 0.1 (even more recently Fukasawa et al.
estimated H ≈ 0.06).

3. Various approaches using a fBm with small Hurst parameter
have been introduced for volatility modeling.

4. These models are referred to as rough volatility models
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Rough-Volatility Models in Finance

Some of the people involved: Alos, Bayer, Bennedsen, ,El Euch,
Forde, Friz, Fukasawa, Gassiat, Gatheral, Gulisashvili, Harms, Hor-
vath, Jacquier, Martini, Pakkanen, Pallavicini, Podolskij, Rosen-
baum, Stemper, Zhang...
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5. Such small estimated values for H (between 0.05 and 0.2)
have been found when studying the volatility process of thou-
sands of assets (Bennedsen et al. ’17).

6. A natural question is the behavior of the fBm in the limiting
case when H → 0.

7. Of course, putting directly H = 0 in the covariance

E[BH
t B

H
s ] = 1

2
(
|t|2H + |s|2H − |t− s|2H

)
,

does not lead to a relevant process.
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Conjecture

FBm BH , after suitable renormalization, converges to a log-
correlated Gaussian field as H → 0. That is, to a centred Gaussian
field with the “covariance kernel”

C(s, t) ∼ log+
1

|t− s|
.

Here log+(u) = max(log(u), 0).
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Log-Correlated Gaussian Fields

1. Let S the real Schwartz space.

2. We write S ′ for the dual of S, that is the space of tempered
distributions.

3. We also define the subspace S0 of the real Schwartz space,
consisting of functions φ from S with

∫
R φ(s) ds = 0, and its

topological dual S ′/R.
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Log-Correlated Gaussian Fields

4. A log-correlated Gaussian field (LGF for short) X ∈ S ′/R, is
a centered Gaussian field whose covariance kernel satisfies

E[〈X,φ1〉〈X,φ2〉] =
∫
R

∫
R

log 1
|t− s|

φ1(t)φ2(s) dt ds,

for any φ1, φ2 ∈ S0.
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Log-Correlated Gaussian Fields

1. LGFs are closely related to some multifractal processes (Man-
delbrot et al. ’97, Barral ’02, Bacry and Muzy ’03).

2. A process (Yt)t≥0 is said to be multifractal if for a range of
values of q, we have for some T > 0

E
[
|Yt+` − Yt|q

]
∼ C(q)`ζ(q), for 0 < ` ≤ T,

3. where C(q) > 0 is a constant and ζ(·) is a non-linear concave
function.
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Multifractal Random Walk

1. Multifractal random walk model for the log-price of an asset
(Bacry et al. ’01) is defined as

Yt = BM([0,t]),

2. where B is a Brownian motion and

M(t) = lim
l→0

σ2
∫ t

0
ewl(u)du, a.s.,

with σ2 > 0.
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1. wl a Gaussian process such that for some λ2 > 0 and T > 0

Cov[wl(t), wl(t′)] = λ2log(T/|t− t′|), for l < |t− t′| ≤ T,

2. Hence we see that M formally corresponds to a measure of the form
exp(Xt)dt, where X is a LGF.
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1. wl a Gaussian process such that for some λ2 > 0 and T > 0

Cov[wl(t), wl(t′)] = λ2log(T/|t− t′|), for l < |t− t′| ≤ T,

2. Hence we see that M formally corresponds to a measure of the form
exp(Xt)dt, where X is a LGF.

3. The precise definition of such measures: Kahane ’85 and the gener-
alizations of Gaussian multiplicative chaos by Rhodes and Vargas
’14, ’16.

4. LGFs and Gaussian multiplicative chaos have an extensive use in
turbulence, disordered systems and Liouville quantum gravity.
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Convergence of fBm towards a LGF

1. In our main theorem we prove an accurate statement about the
convergence of normalized fBm towards a LGF as H goes to zero.

2. Our normalized sequence of processes (XH
. )H∈(0,1) is defined through

XH
t =

BH
t − 1

t

∫ t
0 B

H
u du√

H
, t ∈ R.
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Convergence of fBm towards a LGF
1. In our main theorem we prove an accurate statement about the

convergence of normalized fBm towards a LGF as H goes to zero.

2. Our normalized sequence of processes (XH
. )H∈(0,1) is defined through

XH
t =

BH
t − 1

t

∫ t
0 B

H
u du√

H
, t ∈ R.

3. We say that XH converges weakly to X, as H tends to 0, if for any
φ ∈ S we have

〈XH , φ〉 → 〈X,φ〉,

in law, as H tends to 0.
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Theorem (N. and Rosenbaum, 2018)
The sequence {XH

t }t∈R converges weakly as H tends to zero
towards a centered Gaussian field X satisfying for any φ1, φ2 ∈ S

E[〈X,φ1〉〈X,φ2〉] =
∫
R

∫
R
K(t, s)φ1(t)φ2(s) dt ds,

where for −∞ < s, t <∞, s 6= t and s, t 6= 0

K(t, s) = log 1
|t− s|

+ g(t, s),

where g(t, s) is a continuous function on {(t, s) : t > 0, s > 0}.
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1. The function g(t, s) is given by

g(t, s) = 1
t

∫ t

0
log |s− u|du+ 1

s

∫ s

0
log |t− u|du

− 1
ts

∫ t

0

∫ s

0
log |u− v|dudv.

2. Recall that the limiting process X has the covariance kernel

K(t, s) = log 1
|t− s|

+ g(t, s),

3. Since for t, s > δ for some δ > 0, then g(t, s) is a bounded continuous
function. Hence K(t,s) exhibits the same type of singularity as that
of a LGF.
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Outlines of the proof

1. For t, s ∈ R, let KH(t, s) = E[XH
t X

H
s ].

2. Recall

E[〈X,φ1〉〈X,φ2〉] =
∫
R

∫
R
K(t, s)φ1(t)φ2(s) dt ds.

2. Since XH and X are centered Gaussians taking values in S ′, to
prove the theorem, it is enough to show that for any φ1, φ2 ∈ S,

lim
H→0

∫
R

∫
R
KH(t, s)φ1(t)φ2(s) ds dt =

∫
R

∫
R
K(t, s)φ1(t)φ2(s) ds dt.

Eyal Neuman | Imperial College London 19/37



Fractional Brownian motion with zero Hurst parameter

Gaussian Multiplicative Chaos
(Kahane ’85), (Rhodes, Vargas ’14).

1. Consider a LGF X over a domain D with the covariance kernel

K(x, y) = log+
1

|x− y|
+ g(x, y),

where g is bounded on D ×D.

2. Let γ > 0. We would like to define

Mγ(dx) = eγX (x)dx.

3. Since X is a distribution this is nontrivial.

Eyal Neuman | Imperial College London 20/37



Fractional Brownian motion with zero Hurst parameter

Gaussian Multiplicative Chaos
1. Let θ be a smooth modifier, i.e. θ ∈ C∞, has compact support and∫

R θ(x)dx = 1.

2. Let θε = 1
εθ(·

1
ε ) and Xε = X ? θε the convolution of X and θε.

3. We define random measures

Mγ,ε(dx) = exp
{
γXε(x)− γ2

2 E[Xε(x)2]
}
dx.

4. Then if γ <
√

2, Mγ,ε converge in probability in the space of Radon
measures to Mγ (topology of weak convergence).
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Gaussian Multiplicative Chaos -Convergence

The limiting measure Mγ is called Gaussian Multiplicative Chaos.

1. From Fubini we have for any compact A,

E[Mγ,ε(A)] =
∫
A
E
[
eγXε(x)− γ

2
2 E[Xε(x)2]

]
dx = |A|.

2. This explains the normalization term γ2

2 E[Xε(x)2].
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Gaussian Multiplicative Chaos -Convergence
1. From Fubini and dominated convergence,

E[Mγ,ε(A)2] = E
[( ∫

A
eγXε(x)− γ

2
2 E[Xε(x)2]dx

)2]
= E

[ ∫
A

∫
A
eγXε(x)+γXε(y)− γ

2
2 E[Xε(x)2]− γ

2
2 E[Xε(y)2]dxdy

]
=
∫
A

∫
A
eγ

2E[Xε(x)Xε(y)]dxdy

→
∫
A

∫
A
eγ

2K(x,y)dxdy.

2. Use this to show E[
(
Mγ,ε(A)−Mγ,ε′(A)

)2]→ 0, as ε, ε′ → 0.
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Realizations of GMC for different values of γ (by Rhodes, Vargas ’14)
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Geometric fBm with H = 0
1. Motivated by the previous result, we first fix δ > 0 and define an

approximate volatility measure ξHγ by

ξHγ (dt) = eγX
H
t −

γ2
2 E[(XH

t )2]dt, δ ≤ t ≤ 1,

for some constant γ > 0. Here we assume that ξHγ (·) vanishes on
[δ, 1]c.

2. In what follows, convergence in the L1 norm stands for the usual
convergence of random variables in L1.
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Geometric fBm with H = 0

Theorem (N. and Rosenbaum, 2018)
For γ <

√
2, {ξHγ }H∈(0,1) converges as H approaches zero to a

random measure ξγ in the following sense,∫
R
φ(t)ξHγ (dt) L1

→
∫
R
φ(t)ξγ(dt), for all φ ∈ S.

Moreover, the limiting measure ξγ is Gaussian multiplicative chaos.

Eyal Neuman | Imperial College London 26/37



Fractional Brownian motion with zero Hurst parameter

Multifractal Analysis

Multifractal Analysis is the study of sets Sh where a function f
has a given Hölder exponent h.

• Determination of d(h) - the Hausdorff dimension of Sh.

• The function d(h) is called the spectrum of singularities of f .
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Multifractal Analysis

• Pointwise Regularity -Pt0 polynomial of degree at most blc and

|f(t)− Pt0(t)| ≤ C|t− t0|l.

• Hölder exponent of f at t0

hf (t0) = sup{l : f ∈ C l(t0)}.
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Multifractal Analysis - examples

1. Xt = C · t then d(h) = −∞ ∀h.

2. Xt compound Poisson Process with drift. The number of jumps is
finite. d(0) = 0 and d(h) = −∞ else.

3. Xt is a Brownian motion then d(1/2) = 1 and d(h) = −∞ else
(Orey, Taylor 1979).

4. Xt is a superposition of Brownian motion and compound Poisson,
then d(0) = 0, d(1/2) = 1 and d(h) = −∞ else.
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Multifractal Analysis - Lévy Processes

• Let X = {X(t)}t>0 be a Lévy process with a Lévy measure π.

• When π(R) = ∞ the growth of the Lévy measure near the origin
can be estimated by

β = inf
{
γ ≥ 0 :

∫
|x|≤1

|x|γπ(dx) <∞
}

• Since π(x) is a Lévy measure, therefore 0 ≤ β ≤ 2.
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Spectrum of Singularities - Lévy processes

Theorem (Jaffard, 1999)
X(t) has no Brownian component the spectrum of singularities of
almost every sample path of X(t) is:

dβ(h) =


βh if h ∈ [0, 1/β],

−∞ otherwise;
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Frisch-Parisi conjecture
1. For a real valued function f define

Sp(`) =
∫
|f(x+ `)− f(x)|dx.

2. Suppose that Sp(`) scales like |`|ζf (p), when `→ 0.

3. Multifractal Formalism: Frisch and Parisi (1985) conjectured that

df (h) = inf
p
{h · p− ζf (p) + 1}.
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Multifractal Properties

We describe the behavior of the moments of ξγ (Vargas, Rhodes ’16).
Let B(t, r) be ball of radius r, centred at t.

For all t ∈ (δ, 1) and q ∈ (−∞, 2/γ2), there exists C(t, q) > 0 such
that

E
[
ξγ
(
B(t, r)

)q] ∼ C(t, q)rζ(q), as → 0,

where
ζ(q) = (1 + γ2/2)q − γ2q2/2.
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Multifractal Properties

1. Next we describe the spectrum of singularities of ξγ .

2. For any 0 < γ <
√

2 and 0 < r <
√

2/γ, we define

Gγ,r =
{
x ∈ (δ, 1); lim

ε→0

log ξγ(B(x, ε))
log ε = 1 +

(1
2 − r

)
γ2
}
.

3. The set Gγ,r somehow corresponds to the points x where the Hölder
regularity of ξγ is equal to 1 + (1/2− r)γ2.
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Let dimH(A) denote the Hausdorff dimension of a set A. Then we
have

dimH(Gγ,r) = 1− γ2r2

2 .

In particular, we remark that

dimH(Gγ,r) = inf
p∈R

{
p
(
1 +

(1
2 − r

)
γ2)− ζ(p) + 1

}
.

This equality means that the Frish-Parisi (1985) conjecture relating the
scaling exponents of a process to its spectrum of singularities holds in our
case.
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Open problem: asset price behaviour for H = 0

1. Consider a rough volatility model (e.g. Heston):

dSt = St
√
VtdWt

dVt = λ(θ − Vt)dt+ ν
√
VtdB

H
t ,

where BH and W are negatively correlated.

2. Make sense of the price S = S(H) as H ↓ 0, and derive its
properties.
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