Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint

Eyal Neuman

Imperial College London

Joint work with Mathieu Rosenbaum

May 21, 2019

Fractional Brownian motion

1. A fBm $(B^H_t)_{t\in\mathbb{R}}$ with Hurst parameter $H\in(0,1)$ is a zero-mean Gaussian process with covariance kernel given by

$$\mathbb{E}[B_t^H B_s^H] = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t - s|^{2H} \right).$$

2. It has stationary increments and is self-similar with parameter H, that is $(B^H_{at})_{t\in\mathbb{R}}$ has the same law as $(a^HB^H_t)_{t\in\mathbb{R}}$ for any a>0.

Fractional Brownian motion

- 3. Sample paths of fBm have almost surely Hölder regularity $H-\varepsilon$ for any $\varepsilon>0$.
- 4. Long memory property of the increments when H>1/2. This means that for H>1/2, we have

$$\sum_{i=1}^{+\infty} \text{Cov}[(B_{i+1}^H - B_i^H), B_1^H] = +\infty,$$

which is useful for modeling persistent phenomena.

Applications of Fractional Brownian motion

Fractional Brownian motion is a very popular modeling object in many fields:

- Hydrology, see for example Molz, Liu, Szulga (1997),
- Telecommunications and network traffic: Leland et al. (1994),
 Mikosch et al. (2002).
- Finance, seminal paper by Comte and Renault (1998).

Rough-Volatility Models in Finance

- 1. Recently, Gatheral et al. (2014) performed a careful analysis of financial time series.
- 2. They suggested that the log-volatility process behaves like a fBm with $H\approx 0.1$ (even more recently Fukasawa et al. estimated $H\approx 0.06$).
- 3. Various approaches using a fBm with small Hurst parameter have been introduced for volatility modeling.
- 4. These models are referred to as rough volatility models

Rough-Volatility Models in Finance

Some of the people involved: Alos, Bayer, Bennedsen, ,El Euch, Forde, Friz, Fukasawa, Gassiat, Gatheral, Gulisashvili, Harms, Horvath, Jacquier, Martini, Pakkanen, Pallavicini, Podolskij, Rosenbaum, Stemper, Zhang...

- 5. Such small estimated values for H (between 0.05 and 0.2) have been found when studying the volatility process of thousands of assets (Bennedsen et al. '17).
- 6. A natural question is the behavior of the fBm in the limiting case when $H \rightarrow 0$.
- 7. Of course, putting directly H=0 in the covariance

$$\mathbb{E}[B_t^H B_s^H] = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t - s|^{2H} \right),$$

does not lead to a relevant process.

Conjecture

FBm B^H , after suitable renormalization, converges to a log-correlated Gaussian field as $H \to 0$. That is, to a centred Gaussian field with the "covariance kernel"

$$C(s,t) \sim \log_+ \frac{1}{|t-s|}.$$

Here
$$\log_+(u) = \max(\log(u), 0)$$
.

Log-Correlated Gaussian Fields

- 1. Let S the real Schwartz space.
- 2. We write S' for the dual of S, that is the space of tempered distributions.
- 3. We also define the subspace \mathcal{S}_0 of the real Schwartz space, consisting of functions ϕ from \mathcal{S} with $\int_{\mathbb{R}} \phi(s) \, ds = 0$, and its topological dual \mathcal{S}'/\mathbb{R} .

Log-Correlated Gaussian Fields

4. A log-correlated Gaussian field (LGF for short) $X \in \mathcal{S}'/\mathbb{R}$, is a centered Gaussian field whose covariance kernel satisfies

$$\mathbb{E}[\langle X, \phi_1 \rangle \langle X, \phi_2 \rangle] = \int_{\mathbb{R}} \int_{\mathbb{R}} \log \frac{1}{|t - s|} \phi_1(t) \phi_2(s) dt ds,$$

for any $\phi_1, \phi_2 \in \mathcal{S}_0$.

Log-Correlated Gaussian Fields

- 1. LGFs are closely related to some multifractal processes (Mandelbrot et al. '97, Barral '02, Bacry and Muzy '03).
- 2. A process $(Y_t)_{t\geq 0}$ is said to be multifractal if for a range of values of q, we have for some T>0

$$\mathbb{E}[|Y_{t+\ell} - Y_t|^q] \sim C(q)\ell^{\zeta(q)}, \quad \text{for } 0 < \ell \le T,$$

3. where C(q)>0 is a constant and $\zeta(\cdot)$ is a non-linear concave function.

Multifractal Random Walk

1. Multifractal random walk model for the log-price of an asset (Bacry et al. '01) is defined as

$$Y_t = B_{M([0,t])},$$

2. where B is a Brownian motion and

$$M(t) = \lim_{l \to 0} \sigma^2 \int_0^t e^{w_l(u)} du, \text{ a.s.},$$

with $\sigma^2 > 0$.

1. w_l a Gaussian process such that for some $\lambda^2>0$ and T>0

$$\mathsf{Cov}[w_l(t), w_l(t')] = \lambda^2 \mathsf{log}(T/|t-t'|), \text{ for } l < |t-t'| \le T,$$

2. Hence we see that M formally corresponds to a measure of the form $\exp(X_t)dt$, where X is a LGF.

1. w_l a Gaussian process such that for some $\lambda^2 > 0$ and T > 0

$$Cov[w_l(t), w_l(t')] = \lambda^2 log(T/|t - t'|), \text{ for } l < |t - t'| \le T,$$

- 2. Hence we see that M formally corresponds to a measure of the form $\exp(X_t)dt$, where X is a LGF.
- 3. The precise definition of such measures: Kahane '85 and the generalizations of Gaussian multiplicative chaos by Rhodes and Vargas '14, '16.
- 4. LGFs and Gaussian multiplicative chaos have an extensive use in turbulence, disordered systems and Liouville quantum gravity.

Convergence of fBm towards a LGF

- 1. In our main theorem we prove an accurate statement about the convergence of normalized fBm towards a LGF as H goes to zero.
- 2. Our normalized sequence of processes $(X_{\cdot}^{H})_{H \in (0,1)}$ is defined through

$$X_t^H = \frac{B_t^H - \frac{1}{t} \int_0^t B_u^H du}{\sqrt{H}}, \quad t \in \mathbb{R}.$$

Convergence of fBm towards a LGF

- 1. In our main theorem we prove an accurate statement about the convergence of normalized fBm towards a LGF as H goes to zero.
- 2. Our normalized sequence of processes $(X_{\cdot}^{H})_{H \in (0,1)}$ is defined through

$$X_t^H = \frac{B_t^H - \frac{1}{t} \int_0^t B_u^H du}{\sqrt{H}}, \quad t \in \mathbb{R}.$$

3. We say that X^H converges weakly to X, as H tends to 0, if for any $\phi \in \mathcal{S}$ we have

$$\langle X^H, \phi \rangle \to \langle X, \phi \rangle,$$

in law, as H tends to 0.

Theorem (N. and Rosenbaum, 2018)

The sequence $\{X_t^H\}_{t\in\mathbb{R}}$ converges weakly as H tends to zero towards a centered Gaussian field X satisfying for any $\phi_1,\phi_2\in\mathcal{S}$

$$\mathbb{E}[\langle X, \phi_1 \rangle \langle X, \phi_2 \rangle] = \int_{\mathbb{R}} \int_{\mathbb{R}} K(t, s) \phi_1(t) \phi_2(s) dt ds,$$

where for $-\infty < s, t < \infty$, $s \neq t$ and $s, t \neq 0$

$$K(t,s) = \log \frac{1}{|t-s|} + g(t,s),$$

where g(t,s) is a continuous function on $\{(t,s): t>0, s>0\}$.

1. The function g(t,s) is given by

$$g(t,s) = \frac{1}{t} \int_0^t \log|s - u| du + \frac{1}{s} \int_0^s \log|t - u| du$$
$$-\frac{1}{ts} \int_0^t \int_0^s \log|u - v| du dv.$$

2. Recall that the limiting process X has the covariance kernel

$$K(t,s) = \log \frac{1}{|t-s|} + g(t,s),$$

3. Since for $t,s>\delta$ for some $\delta>0$, then g(t,s) is a bounded continuous function. Hence K(t,s) exhibits the same type of singularity as that of a LGF.

Outlines of the proof

- 1. For $t, s \in \mathbb{R}$, let $K_H(t, s) = \mathbb{E}[X_t^H X_s^H]$.
- 2. Recall

$$\mathbb{E}[\langle X, \phi_1 \rangle \langle X, \phi_2 \rangle] = \int_{\mathbb{R}} \int_{\mathbb{R}} K(t, s) \phi_1(t) \phi_2(s) dt ds.$$

2. Since X^H and X are centered Gaussians taking values in \mathcal{S}' , to prove the theorem, it is enough to show that for any $\phi_1,\phi_2\in\mathcal{S}$,

$$\lim_{H\to 0} \int_{\mathbb{R}} \int_{\mathbb{R}} K_H(t,s)\phi_1(t)\phi_2(s)\,ds\,dt = \int_{\mathbb{R}} \int_{\mathbb{R}} K(t,s)\phi_1(t)\phi_2(s)\,ds\,dt.$$

Gaussian Multiplicative Chaos

(Kahane '85), (Rhodes, Vargas '14).

1. Consider a LGF X over a domain D with the covariance kernel

$$K(x,y) = \log_{+} \frac{1}{|x-y|} + g(x,y),$$

where g is bounded on $D \times D$.

2. Let $\gamma > 0$. We would like to define

$$M_{\gamma}(dx) = e^{\gamma X(x)} dx.$$

3. Since X is a distribution this is nontrivial.

Gaussian Multiplicative Chaos

- 1. Let θ be a smooth modifier, i.e. $\theta \in \mathcal{C}^{\infty}$, has compact support and $\int_{\mathbb{R}} \theta(x) dx = 1$.
- 2. Let $\theta_{\varepsilon} = \frac{1}{\varepsilon}\theta(\cdot\frac{1}{\varepsilon})$ and $X_{\varepsilon} = X \star \theta_{\varepsilon}$ the convolution of X and θ_{ε} .
- 3. We define random measures

$$M_{\gamma,\varepsilon}(dx) = \exp\left\{\gamma X_{\varepsilon}(x) - \frac{\gamma^2}{2}E[X_{\varepsilon}(x)^2]\right\}dx.$$

4. Then if $\gamma < \sqrt{2}$, $M_{\gamma,\varepsilon}$ converge in probability in the space of Radon measures to M_{γ} (topology of weak convergence).

Gaussian Multiplicative Chaos - Convergence

The limiting measure M_{γ} is called Gaussian Multiplicative Chaos.

1. From Fubini we have for any compact A,

$$E[M_{\gamma,\varepsilon}(A)] = \int_A E\left[e^{\gamma X_{\varepsilon}(x) - \frac{\gamma^2}{2}E[X_{\varepsilon}(x)^2]}\right] dx = |A|.$$

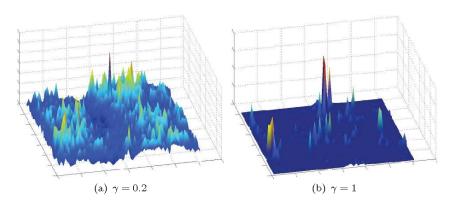
2. This explains the normalization term $\frac{\gamma^2}{2}E[X_{\varepsilon}(x)^2]$.

Gaussian Multiplicative Chaos - Convergence

1. From Fubini and dominated convergence,

$$\begin{split} E[M_{\gamma,\varepsilon}(A)^2] &= E\Big[\Big(\int_A e^{\gamma X_\varepsilon(x) - \frac{\gamma^2}{2} E[X_\varepsilon(x)^2]} dx\Big)^2\Big] \\ &= E\Big[\int_A \int_A e^{\gamma X_\varepsilon(x) + \gamma X_\varepsilon(y) - \frac{\gamma^2}{2} E[X_\varepsilon(x)^2] - \frac{\gamma^2}{2} E[X_\varepsilon(y)^2]} dx dy\Big] \\ &= \int_A \int_A e^{\gamma^2 E[X_\varepsilon(x) X_\varepsilon(y)]} dx dy \\ &\to \int_A \int_A e^{\gamma^2 K(x,y)} dx dy. \end{split}$$

2. Use this to show $E[(M_{\gamma,\varepsilon}(A)-M_{\gamma,\varepsilon'}(A))^2]\to 0$, as $\varepsilon,\varepsilon'\to 0$.



Realizations of GMC for different values of γ (by Rhodes, Vargas '14)

Geometric fBm with H=0

1. Motivated by the previous result, we first fix $\delta>0$ and define an approximate volatility measure ξ_γ^H by

$$\xi_{\gamma}^{H}(dt) = e^{\gamma X_{t}^{H} - \frac{\gamma^{2}}{2} \mathbb{E}[(X_{t}^{H})^{2}]} dt, \quad \delta \leq t \leq 1,$$

for some constant $\gamma>0.$ Here we assume that $\xi_{\gamma}^{H}(\cdot)$ vanishes on $[\delta,1]^{c}.$

2. In what follows, convergence in the ${\cal L}^1$ norm stands for the usual convergence of random variables in ${\cal L}^1$.

Geometric fBm with H=0

Theorem (N. and Rosenbaum, 2018)

For $\gamma<\sqrt{2}$, $\{\xi_{\gamma}^H\}_{H\in(0,1)}$ converges as H approaches zero to a random measure ξ_{γ} in the following sense,

$$\int_{\mathbb{R}} \phi(t) \xi_{\gamma}^{H}(dt) \xrightarrow{L^{1}} \int_{\mathbb{R}} \phi(t) \xi_{\gamma}(dt), \quad \text{for all } \phi \in \mathcal{S}.$$

Moreover, the limiting measure ξ_{γ} is Gaussian multiplicative chaos.

Multifractal Analysis

Multifractal Analysis is the study of sets S_h where a function f has a given Hölder exponent h.

- ullet Determination of d(h) the Hausdorff dimension of $S_h.$
- ullet The function d(h) is called the *spectrum of singularities* of f.

Multifractal Analysis

ullet Pointwise Regularity - P_{t_0} polynomial of degree at most $\lfloor l \rfloor$ and

$$|f(t) - P_{t_0}(t)| \le C|t - t_0|^l$$
.

ullet Hölder exponent of f at t_0

$$h_f(t_0) = \sup\{l : f \in C^l(t_0)\}.$$

Multifractal Analysis - examples

- 1. $X_t = C \cdot t$ then $d(h) = -\infty \ \forall h$.
- 2. X_t compound Poisson Process with drift. The number of jumps is finite. d(0)=0 and $d(h)=-\infty$ else.
- 3. X_t is a Brownian motion then d(1/2)=1 and $d(h)=-\infty$ else (Orey, Taylor 1979).
- 4. X_t is a superposition of Brownian motion and compound Poisson, then d(0)=0, d(1/2)=1 and $d(h)=-\infty$ else.

Multifractal Analysis - Lévy Processes

- Let $X = \{X(t)\}_{t>0}$ be a Lévy process with a Lévy measure π .
- \bullet When $\pi(\mathbb{R})=\infty$ the growth of the Lévy measure near the origin can be estimated by

$$\beta = \inf \left\{ \gamma \ge 0 : \int_{|x| \le 1} |x|^{\gamma} \pi(dx) < \infty \right\}$$

• Since $\pi(x)$ is a Lévy measure, therefore $0 \le \beta \le 2$.

Spectrum of Singularities - Lévy processes

Theorem (Jaffard, 1999)

X(t) has no Brownian component the spectrum of singularities of almost every sample path of X(t) is:

$$d_{\beta}(h) = \begin{cases} \beta h & \text{if } h \in [0, 1/\beta], \\ -\infty & \text{otherwise;} \end{cases}$$

Frisch-Parisi conjecture

1. For a real valued function f define

$$S_p(\ell) = \int |f(x+\ell) - f(x)| dx.$$

- 2. Suppose that $S_p(\ell)$ scales like $|\ell|^{\zeta_f(p)}$, when $\ell \to 0$.
- 3. Multifractal Formalism: Frisch and Parisi (1985) conjectured that

$$d_f(h) = \inf_{p} \{ h \cdot p - \zeta_f(p) + 1 \}.$$

Multifractal Properties

We describe the behavior of the moments of ξ_{γ} (Vargas, Rhodes '16). Let B(t,r) be ball of radius r, centred at t.

For all $t\in (\delta,1)$ and $q\in (-\infty,2/\gamma^2)$, there exists C(t,q)>0 such that

$$\mathbb{E}[\xi_{\gamma}(B(t,r))^q] \sim C(t,q)r^{\zeta(q)}, \text{ as } \to 0,$$

where

$$\zeta(q) = (1 + \gamma^2/2)q - \gamma^2 q^2/2.$$

Multifractal Properties

- 1. Next we describe the spectrum of singularities of ξ_{γ} .
- 2. For any $0 < \gamma < \sqrt{2}$ and $0 < r < \sqrt{2}/\gamma$, we define

$$G_{\gamma,r} = \left\{ x \in (\delta, 1); \lim_{\varepsilon \to 0} \frac{\log \xi_{\gamma}(B(x, \varepsilon))}{\log \varepsilon} = 1 + (\frac{1}{2} - r)\gamma^2 \right\}.$$

3. The set $G_{\gamma,r}$ somehow corresponds to the points x where the Hölder regularity of ξ_{γ} is equal to $1 + (1/2 - r)\gamma^2$.

Let $dim_H(A)$ denote the Hausdorff dimension of a set A. Then we have

$$dim_H(G_{\gamma,r}) = 1 - \frac{\gamma^2 r^2}{2}.$$

In particular, we remark that

$$dim_H(G_{\gamma,r}) = \inf_{p \in \mathbb{R}} \Big\{ p \Big(1 + (\frac{1}{2} - r)\gamma^2 \Big) - \zeta(p) + 1 \Big\}.$$

This equality means that the Frish-Parisi (1985) conjecture relating the scaling exponents of a process to its spectrum of singularities holds in our case.

Open problem: asset price behaviour for H = 0

1. Consider a rough volatility model (e.g. Heston):

$$\begin{split} dS_t &= S_t \sqrt{V_t} dW_t \\ dV_t &= \lambda (\theta - V_t) dt + \nu \sqrt{V_t} dB_t^{\mathbf{H}}, \end{split}$$

where $B^{\mathbf{H}}$ and W are negatively correlated.

2. Make sense of the price S=S(H) as $H\downarrow 0$, and derive its properties.

THANK YOU for your ATTENTION!