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Introduction
Liquidity and Asset Prices

v

Interplay of liquidity and asset prices.
» Higher returns for less liquid assets?
» How does a transaction tax affect the volatility of a financial
market?

v

Such questions need to be studied with equilibrium models.

> Prices determined as output by matching supply and demand,
rather than modeled as input.

v

Equilibrium analyses are generally hard. Fixed points.

v

Intractability is compounded with frictions.

» "The problem is that we don't have enough math. Frictions are
Just hard with the tools we have right now.” (Cochrane '10).
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Introduction

Literature

Extant literature focused on restrictive settings.

» Numerical solution of simple tree models:

» Heaton/Lucas '96. Buss/Dumas ‘15; Buss/Vilkov/Uppal ‘15.
Deterministic asset prices (no volatility):

» Vayanos/Villa ‘99; Lo/Mamaysky/Wang ‘04; Weston '17.
Assets with exogenous volatilities:

» Vayanos '98; Garleanu/Pedersen '16; Sannikov/Skrzypacz ‘16;
Bouchard/Fukasawa/Herdegen/M-K ‘18.

Deterministic trading strategies (Vayanos '98).

v

v

v

v

Models with realistic dynamics for prices and trading volume?

v

Link between trading costs, asset returns, and volatilities?

v

Do the effects matter for realistic parameter values?
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Asset Pricing without Frictions
Risk-Sharing Economy

» Exogenous savings account. Price normalized to one.

v

Fixed supply s > 0 of risky asset with It6 dynamics:

dSt = ,Utdt + O'tth

v

Initial price So, expected returns (ji¢)¢c[o, 7] and volatility
(0t)eefo, 1] to be determined in equilibrium.

v

Agents n = 1,2 trade to hedge fluctuations of their

endowments
dy{ = pidW;

v

Frictionless wealth dynamics of a trading strategy (¢¢)¢co, 1)

gOtdSt + dytn
Imperial College



Asset Pricing without Frictions

Goal Functionals and Equilibrium

» Simplest mean-variance goal functional:

E [foT(sotdSt +dYP) = L [ (pedSe + dvt">]
=E [foT Ptpt — %n(wtﬁt + B?)zdt] — max!

» Optimum directly given by pointwise maximization:

n__ Mt _ﬂ
¢t_7n02 ot

» Supply s in turn determines equilibrium return:

B 1 2 B 1.2
,ut:’yaf (s+’%+§—i), Where’y:%h;’72

» What about the equilibrium volatility? .
g Y Imperial College



Asset Pricing without Frictions
Equilibrium ct'd

> Supply matches demand for any volatility (o+).ejo, 77 and
. Bt 4 B
Mt = YOy 5+gt+gt

» Simplest way to pin down volatility: exogenous terminal
condition,
Sr=6

» Fundamental value or (expectation of) future dividends.

» Equilibrium price is in turn determined by a (quadratic)
“Backward Stochastic Differential Equation” (BSDE):

dS; = (7s0? +Foe(BL + 7)) dt + oedWs, Sy =6

Imperial College



Asset Pricing without Frictions
Equilibrium ct'd

» Volatility is now part of the solution.

» Needs to be chosen appropriately to steer (adapted) solution
into terminal condition.

» For bounded inputs &, 31, 32, existence and uniqueness of
scalar quadratic BSDEs is standard.

» Here: explicit solution in terms of Laplace transform of &:
25 5 -
S: = —% log E/ [e 276] where 95 = 5(—7fo(ﬁtl+ﬁ?)dt>

» Example: if 81 + 32 =0 and & = bT + aWr, then
equilibrium price has Bachelier dynamics:
St = (b—7sa°T) + ysa’t + aW;
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Asset Pricing with Frictions

Goal Functional with Transaction Costs

» Model with quadratic trading costs,

) = E [y (prme = F(oeoe+ B7)? = 3¢2)dt] — max!

» Standard in market microstructure (Almgren/Chriss ‘01).

» Penalty on size and speed of adjustments.

» Most tractable specification due to linear first-order condition.
(Garleanu/Pedersen ‘13/°16, Cartea/Jaimungal ‘16,
Bank/Soner/Voss ‘17).

» Equilibrium dynamics?

» First solve individual problems for fixed p, o.

» Then pin down g, o by matching supply and demand as well
as the terminal condition.

» With trading costs, optimization is no longer pointwise.
» Current position becomes extra state variable. Imperial College



Asset Pricing with Frictions
Individual Optimality

> Fix return (j1¢)¢cfo, 7] and volatility (o¢)sefo,1-
» Necessary and sufficient for optimality:

» Directional derivative lim,_,q %(J(gb + ) — J()) vanishes for
any perturbation

0=E [fOT (,Ut fot Yudu — y'or(pro + BF) fot Yudu — )\¢t¢t) dt}

» Rewrite using Fubini's theorem:
0=E [foT (ftT (Nu - VHO'u(‘PuUu + ﬁ”) du — A@:) ¢tdt}

» Has to hold for any perturbation ;.
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Asset Pricing with Frictions
Individual Optimality and FBSDEs

» Whence, tower property of conditional expectation yields:
Dt = lEt“ [ftT (Nu — "oy (Qouo'u + 53) ) du}
=M, — %fot(,uu - 'Vngu ((;Duau + ﬁ,’]))du

for a martingale M;.
» Optimal strategy solves a Forward-Backward SDE (FBSDE):

dey = ¢ldt, g = initial position
dif = dM, + % (o2pf — % + 0uB))dt, =0
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Asset Pricing with Frictions
Individual Optimality and FBSDEs ct'd

» If the volatility oy = o is constant:
» FBSDE for (!, 1) can be reduced to a scalar Riccati ODE by

>

a suitable ansatz.
Explicit solution in terms of conditional expectations of inputs

w, B, B2

> If the volatility (0¢)¢c[o, ] is stochastic (and bounded):

>

>

>

ODE replaced by backward stochastic Riccati equation.

Still a scalar equation.

Existence and uniqueness established by Kohlmann/Tang ‘02
using comparison arguments.

In turn allows to describe (¢!, ') using conditional
expectations.

» Equilibrium?
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Asset Pricing with Frictions
Market Clearing

v

To match supply and demand, need
0 = d¢y + d?
2
= (RO 0t + 7260 + F (1B +9282) — %) dt + dM;

v

In equilibrium: @2 = s — 1.

v

Equilibrium return therefore has to satisfy

191 232 2 1 2
_ v BitB 272%s 29— 1
Ut—Ut%‘FO’t%‘FO’t’Y 27 G

v

Plug back into FBSDE corresponding to agent 1's optimality
condition ~» FBSDE for equilibrium strategy of agent 1.
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Asset Pricing with Frictions
Equilibrium and FBSDEs

» Equilibrium position ¢! and trading rate ¢, have to solve

dgo% = 'ldt goé = initial position
202 2 1 2
dpt =3 (o DB — 0222 4 2RO gt + dME, @ =0

» What about the equilibrium volatility (o+)¢c[o, 717

» As without frictions, has to match terminal condition:

ds, = {0M+U2vs 1] dt + oedW,, St =6

» In summary: equilibrium price (S, o), position ¢!, trading rate
ol solve fully coupled system of FBSDEs.
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Asset Pricing with Frictions
Well-posedness for FBSDEs?

> No general theory.

» Well-posedness can fail even for linear systems.

» Positive results need to be established on a case-by-case basis.
> The system arising here:

» Has a multidimensional backward component.

> Is not Lipschitz and generally not even of quadratic growth.

> |s fully coupled.
» Existence and Uniqueness? Properties fo the solution?
» Picard iteration only works if time horizon T is short enough.
» But BSDE for equilibrium price decouples for v = ~2.

> Equilibrium price S and volatility o then coincide with
frictionless counterparts S, &.
» Expansion around this case for v ~ 72?
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Asset Pricing with Frictions

Similar Risk Aversions

» Herdegen/Possamai/M-K ‘19:
» FBSDE for equilibrium price has a solution given that |y! —~2]
sufficiently small.
» Provides unique frictional equilibrium in a neighbourhood of
it's frictionless counterpart.
» Stability estimates used in the proof also allow to establish

asymptotic expansions for small |41 —~2|.
» E.g., suppose 8 = —3%2 = W, and & = bT + aWr, so that

St = (b—7a°T) +7a%t + aW,
Then price and volatility correction have opposite signs:

50~50+\/T TBavVA

o ol ’Y

o R T — =L BV
V2T Imperial College



Asset Pricing with Frictions
Asymptotic Expansion ct'd

» Empirical literature going back to Amihud/Mendelson ‘86
consistently finds “illiquidity discounts”.

» Necessarily correspond to a positive relationship between
trading costs and volatility here.

» Consistent with numerical evidence of Buss/Dumas ‘17,
asymmetric information model of Danilova/Juillard ‘19 and
empirics of Umlauf ‘93, Jones/Seguin ‘17, Hau ‘06.

» Corresponding expected returns approximately have
Ornstein-Uhlenbeck dynamics.

» Average level is higher for less liquid stocks — “liquidity
premia” in line with empirical literature.

» Partially predictable fluctuations like in reduced-form models in
asset-management literature.

» Not caused by mean-reverting fundamentals, but by

sluggishness of the trading process. Imperial College



Asset Pricing with Frictions
Calibrated Example

» Goal: choose model parameters to match main properties of
time series data.

» Start with frictionless Bachelier model
St = (b—7sa°T) + ysa’t + aW;

that obtains for S + 32 =0 and & = bT + aWrs:

» Match volatility a to standard deviation of asset returns.

» Given supply s, choose aggregate risk aversion 4 to match
average asset returns.

» Choose mean payoff b to match current asset price.

» Individual risk aversions 7,42 and endowment volatilities
B, 3% do not matter without frictions.
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Asset Pricing with Frictions
Calibrated Example ct'd

» Without frictions: individual risk aversions v, ¥ and
endowment volatilities 31, 52 do not matter.

» With frictions: frictionless equilibrium remains unchanged for
7! = ~2. Size of deviation depends on |y} — ~2|.
» Gonon/M-K/Shi: fit to time series for prices and volume.
» Choose quadratic trading costs to match effect of observable
bid-ask spreads.
» Choose endowment volatilities 5%, 32 to match empirical
“trading volume”.
» Choose heterogeneity |y! —~2| to match illiquidity discounts
observed empirically.

Imperial College



Asset Pricing with Frictions
Calibrated Example ct'd

For 2 = 241
» Frictionless equilibrium price is decreased far from maturity.
» Same terminal condition, and in turn higher expected returns
(“liquidity premia™).

» Frictionless equilibrium price and price adjustment:

L L L L L
2000 4000 6000 8000 1000076
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Asset Pricing with Frictions
Calibrated Example ct'd

For 72 = 2%
» Frictionless equilibrium volatility is 15.

> Increase due to transaction costs of about 7%.

effect with realistic trading volume.

08l

06l

02

Non negligible

" Imperial College



Asset Pricing with Frictions
Calibrated Example ct'd

» Empirical trading volume (left panel) and simulated volume in
the calibrated model (right panel).

» Level and diffusive behavior reproduced well. But excess
skewness and kurtosis in data.

o
2
«

w IS

Daily Trading Volume
~

Daily Trading Volume

Time (yr) Time (yr)
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Asset Pricing with Frictions

Extensions

» Trades due to heterogenous beliefs rather than risk sharing?
» Work in progress with Nutz and Tan.
> General small-cost expansions?
» Work in progress with Shi and Weber.
> More general transaction costs.
» E.g., proportional, square-root impact.
» Leads to more complicated FBSDEs. Wellposedness unclear
even for short horizons.
» Gonon/Shi/MK: Numerical solution via deep-learning
approach of Han/Jentzen/E '18.
» Works well only for short time horizons so far.
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Asset Pricing with Frictions

Extensions ct'd

Asset prices with trading costs oc 2 and o gb?/zz

0.4 0.4
—— samplePathl —— samplePathl
~—— samplePath2 ~—— samplePath2
—— odePathl
0.2 —— odePath2 0.2
% 00 % 00
g g
g g
g g
3 5
£ -02 £ -02
-0.4 -0.4
-06

6
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
t t

Imperial College

Lrondon



Asset Pricing with Frictions

Extensions ct'd

Volatility corrections trading costs o [¢| and o |¢|3/2:
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Asset Pricing with Frictions

Extensions ct'd

» Empirical trading volume (left panel) and simulated volume in
the calibrated model with costs oc |¢¢|3/? (right panel):
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