Liquidity and Asset Prrices

Johannes Muhle-Karbe

Imperial College London

Hong Kong, May 21, 2019

Outline

Introduction

Asset Pricing without Frictions

Asset Pricing with Frictions

Extensions

Introduction

Liquidity and Asset Prices

- Interplay of liquidity and asset prices.
 - Higher returns for less liquid assets?
 - How does a transaction tax affect the volatility of a financial market?
- Such questions need to be studied with equilibrium models.
 - Prices determined as output by matching supply and demand, rather than modeled as input.
- Equilibrium analyses are generally hard. Fixed points.
- Intractability is compounded with frictions.
 - ► "The problem is that we don't have enough math. Frictions are just hard with the tools we have right now." (Cochrane '10).

Introduction

Literature

Extant literature focused on restrictive settings.

- Numerical solution of simple tree models:
 - ► Heaton/Lucas '96. Buss/Dumas '15; Buss/Vilkov/Uppal '15.
- Deterministic asset prices (no volatility):
 - Vayanos/Villa '99; Lo/Mamaysky/Wang '04; Weston '17.
- Assets with exogenous volatilities:
 - Vayanos '98; Garleanu/Pedersen '16; Sannikov/Skrzypacz '16; Bouchard/Fukasawa/Herdegen/M-K '18.
- Deterministic trading strategies (Vayanos '98).
- Models with realistic dynamics for prices and trading volume?
- Link between trading costs, asset returns, and volatilities?
- ▶ Do the effects matter for realistic parameter values?

Risk-Sharing Economy

- Exogenous savings account. Price normalized to one.
- ▶ Fixed supply s > 0 of risky asset with Itô dynamics:

$$dS_t = \mu_t dt + \sigma_t dW_t$$

- ▶ Initial price S_0 , expected returns $(\mu_t)_{t \in [0,T]}$ and volatility $(\sigma_t)_{t \in [0,T]}$ to be determined in equilibrium.
- Agents n = 1, 2 trade to hedge fluctuations of their endowments

$$dY_t^n = \beta_t^n dW_t$$

▶ Frictionless wealth dynamics of a trading strategy $(\varphi_t)_{t \in [0,T]}$:

$$\varphi_t dS_t + dY_t^n$$

Goal Functionals and Equilibrium

Simplest mean-variance goal functional:

$$E\left[\int_0^T (\varphi_t dS_t + dY_t^n) - \frac{\gamma^n}{2} \int_0^T \langle \varphi_t dS_t + dY_t^n \rangle\right]$$

$$= E\left[\int_0^T \varphi_t \mu_t - \frac{\gamma^n}{2} (\varphi_t \sigma_t + \beta_t^n)^2 dt\right] \to \max!$$

Optimum directly given by pointwise maximization:

$$\varphi_t^n = \frac{\mu_t}{\gamma^n \sigma_t^2} - \frac{\beta_t^n}{\sigma_t}$$

Supply s in turn determines equilibrium return:

$$\mu_t = \bar{\gamma} \sigma_t^2 \left(s + \frac{\beta_t^1}{\sigma_t} + \frac{\beta_t^2}{\sigma_t} \right), \quad \text{where } \bar{\gamma} = \frac{\gamma^1 \gamma^2}{\gamma^1 + \gamma^2}$$

What about the equilibrium volatility?

Equilibrium ct'd

▶ Supply matches demand for any volatility $(\sigma_t)_{t \in [0,T]}$ and

$$\mu_t = \bar{\gamma}\sigma_t^2 \left(s + \frac{\beta_t^1}{\sigma_t} + \frac{\beta_t^2}{\sigma_t}\right)$$

 Simplest way to pin down volatility: exogenous terminal condition,

$$S_T = \mathfrak{S}$$

- Fundamental value or (expectation of) future dividends.
- Equilibrium price is in turn determined by a (quadratic) "Backward Stochastic Differential Equation" (BSDE):

$$dS_t = \left(\bar{\gamma}s\sigma_t^2 + \bar{\gamma}\sigma_t(\beta_t^1 + \beta_t^2)\right)dt + \sigma_t dW_t, \quad S_T = \mathfrak{S}$$

Equilibrium ct'd

- Volatility is now part of the solution.
 - ▶ Needs to be chosen appropriately to steer (adapted) solution into terminal condition.
- ▶ For bounded inputs \mathfrak{S} , β^1 , β^2 , existence and uniqueness of scalar quadratic BSDEs is standard.
- ▶ Here: explicit solution in terms of Laplace transform of 𝘽:

$$S_t = -rac{1}{2ar{\gamma}}\log E_t^eta\left[e^{-2ar{\gamma}\mathfrak{S}}
ight] \quad ext{where } rac{d\mathbb{P}^eta}{d\mathbb{P}} = \mathcal{E}\Big(-ar{\gamma}\int_0^\cdot(eta_t^1+eta_t^2)dt\Big)$$

Example: if $\beta^1 + \beta^2 = 0$ and $\mathfrak{S} = bT + aW_T$, then equilibrium price has Bachelier dynamics:

$$S_t = (b - \bar{\gamma} s a^2 T) + \bar{\gamma} s a^2 t + a W_t$$
 Imperial College London

Goal Functional with Transaction Costs

Model with quadratic trading costs,

$$J(\dot{\varphi}) = E\left[\int_0^T \left(\varphi_t \mu_t - \frac{\gamma^n}{2} (\varphi_t \sigma_t + \beta_t^n)^2 - \frac{\lambda}{2} \dot{\varphi}_t^2\right) dt\right] \to \max!$$

- Standard in market microstructure (Almgren/Chriss '01).
 - Penalty on size and speed of adjustments.
 - ▶ Most tractable specification due to linear first-order condition. (Garleanu/Pedersen '13/'16, Cartea/Jaimungal '16, Bank/Soner/Voss '17).
- Equilibrium dynamics?
 - ▶ First solve individual problems for fixed μ , σ .
 - ▶ Then pin down μ , σ by matching supply and demand as well as the terminal condition.
- With trading costs, optimization is no longer pointwise.
 - Current position becomes extra state variable. Imperial College

Individual Optimality

- ▶ Fix return $(\mu_t)_{t \in [0,T]}$ and volatility $(\sigma_t)_{t \in [0,T]}$.
- Necessary and sufficient for optimality:
 - ▶ Directional derivative $\lim_{\rho\to 0} \frac{1}{\rho} (J(\dot{\varphi} + \rho \dot{\psi}) J(\dot{\varphi}))$ vanishes for any perturbation ψ :

$$0 = E_t \left[\int_0^T \left(\mu_t \int_0^t \dot{\psi}_u du - \gamma^n \sigma_t (\varphi_t \sigma_t + \beta_t^n) \int_0^t \dot{\psi}_u du - \lambda \dot{\varphi}_t \dot{\psi}_t \right) dt \right]$$

Rewrite using Fubini's theorem:

$$0 = E_t \left[\int_0^T \left(\int_t^T \left(\mu_u - \gamma^n \sigma_u (\varphi_u \sigma_u + \beta_u^n) \right) du - \lambda \dot{\varphi}_t^\top \right) \dot{\psi}_t dt \right]$$

• Has to hold for any perturbation $\dot{\psi}_t$.

Individual Optimality and FBSDEs

▶ Whence, tower property of conditional expectation yields:

$$\dot{\varphi}_{t} = \frac{1}{\lambda} E_{t} \left[\int_{t}^{T} \left(\mu_{u} - \gamma^{n} \sigma_{u} \left(\varphi_{u} \sigma_{u} + \beta_{u}^{n} \right) \right) du \right]$$
$$= M_{t} - \frac{1}{\lambda} \int_{0}^{t} \left(\mu_{u} - \gamma^{n} \sigma_{u} \left(\varphi_{u} \sigma_{u} + \beta_{u}^{n} \right) \right) du$$

for a martingale M_t .

▶ Optimal strategy solves a Forward-Backward SDE (FBSDE):

$$\begin{split} d\varphi_t^n &= \dot{\varphi}_t^n dt, \qquad \varphi_0^n = \text{initial position} \\ d\dot{\varphi}_t^n &= dM_t + \frac{\gamma^n}{\lambda} \Big(\sigma_u^2 \varphi_t^n - \frac{\mu_t}{\gamma^n} + \sigma_u \beta_u^n \Big) dt, \quad \dot{\varphi}_T^n = 0 \end{split}$$

Individual Optimality and FBSDEs ct'd

- ▶ If the volatility $\sigma_t \equiv \sigma$ is *constant*:
 - ▶ FBSDE for $(\varphi^1, \dot{\varphi}^1)$ can be reduced to a scalar Riccati ODE by a suitable ansatz.
 - Explicit solution in terms of conditional expectations of inputs μ, β^1, β^2 .
- ▶ If the volatility $(\sigma_t)_{t \in [0,T]}$ is stochastic (and bounded):
 - ▶ ODE replaced by backward *stochastic* Riccati equation.
 - Still a scalar equation.
 - Existence and uniqueness established by Kohlmann/Tang '02 using comparison arguments.
 - In turn allows to describe $(\varphi^1, \dot{\varphi}^1)$ using conditional expectations.
- Equilibrium?

Market Clearing

▶ To match supply and demand, need

$$0 = d\dot{\varphi}_t^1 + d\dot{\varphi}_t^2$$

= $\left(\frac{\sigma_t^2}{\lambda}(\gamma^1\varphi_t^1 + \gamma^2\varphi_t^2) + \frac{\sigma_t}{\lambda}(\gamma^1\beta_t^1 + \gamma^2\beta_t^2) - \frac{2\mu_t}{\lambda}\right)dt + dM_t$

- ▶ In equilibrium: $\varphi_t^2 = s \varphi_t^1$.
- Equilibrium return therefore has to satisfy

$$\mu_t = \sigma_t \frac{\gamma^1 \beta_t^1 + \gamma^2 \beta_t^2}{2} + \sigma_t^2 \frac{\gamma^2 s}{2} + \sigma_t^2 \frac{\gamma^1 - \gamma^2}{2} \varphi_t^1$$

▶ Plug back into FBSDE corresponding to agent 1's optimality condition ~→ FBSDE for equilibrium strategy of agent 1.

Equilibrium and FBSDEs

• Equilibrium position φ_t^1 and trading rate $\dot{\varphi}_t$ have to solve

$$\begin{split} d\varphi_t^1 &= \dot{\varphi}_t^1 dt, \quad \varphi_0^1 = \text{initial position} \\ d\dot{\varphi}_t^1 &= \frac{1}{\lambda} \left(\sigma_t \frac{\gamma^1 \beta_t^1 - \gamma^2 \beta_t^2}{2} - \sigma_t^2 \frac{\gamma^2 s}{2} + \sigma_t^2 \frac{\gamma^1 + \gamma^2}{2} \varphi_t^1 \right) dt + dM_t^1, \quad \dot{\varphi}_T^1 = 0 \end{split}$$

- ▶ What about the equilibrium volatility $(\sigma_t)_{t \in [0,T]}$?
- ▶ As without frictions, has to match terminal condition:

$$dS_t = \left[\frac{\sigma_t \gamma^1 \beta_t^1 + \gamma^2 \beta_t^2}{2} + \frac{\sigma_t^2 \gamma^2 s}{2} + \frac{\sigma_t^2 \gamma^1 - \gamma^2}{2} \varphi_t^1 \right] dt + \frac{\sigma_t dW_t}{2}, \quad S_T = \mathfrak{S}$$

In summary: equilibrium price (S, σ) , position φ^1 , trading rate $\dot{\varphi}^1$ solve fully coupled system of FBSDEs.

Well-posedness for FBSDEs?

- No general theory.
 - ▶ Well-posedness can fail even for linear systems.
 - Positive results need to be established on a case-by-case basis.
- ► The system arising here:
 - ▶ Has a multidimensional backward component.
 - ▶ Is not Lipschitz and generally not even of quadratic growth.
 - Is fully coupled.
- Existence and Uniqueness? Properties fo the solution?
- ▶ Picard iteration only works if time horizon *T* is short enough.
- ▶ But BSDE for equilibrium price decouples for $\gamma^1 = \gamma^2$.
 - ▶ Equilibrium price S and volatility σ then coincide with frictionless counterparts \bar{S} , $\bar{\sigma}$.
 - Expansion around this case for $\gamma^1 \approx \gamma^2$?

Similar Risk Aversions

- Herdegen/Possamai/M-K '19:
 - ▶ FBSDE for equilibrium price has a solution given that $|\gamma^1 \gamma^2|$ sufficiently small.
 - Provides unique frictional equilibrium in a neighbourhood of it's frictionless counterpart.
 - ▶ Stability estimates used in the proof also allow to establish asymptotic expansions for small $|\gamma^1 \gamma^2|$.
 - ▶ E.g., suppose $\beta^1 = -\beta^2 = \beta W_t$ and $\mathfrak{S} = bT + aW_T$, so that

$$\bar{S}_t = (b - \bar{\gamma}a^2T) + \bar{\gamma}a^2t + aW_t$$

Then price and volatility correction have opposite signs:

$$\begin{split} S_0 &\approx \bar{S}_0 + \frac{(\gamma^1 - \gamma^2)\gamma^2}{\sqrt{2(\gamma^1 + \gamma^2)}} T\beta a \sqrt{\lambda} \\ \sigma_t &\approx \bar{\sigma} - \frac{\gamma^1 - \gamma^2}{\sqrt{2(\gamma^1 + \gamma^2)}} \beta \sqrt{\lambda} \end{split}$$

Asymptotic Expansion ct'd

- Empirical literature going back to Amihud/Mendelson '86 consistently finds "illiquidity discounts".
- Necessarily correspond to a positive relationship between trading costs and volatility here.
 - Consistent with numerical evidence of Buss/Dumas '17, asymmetric information model of Danilova/Juillard '19 and empirics of Umlauf '93, Jones/Seguin '17, Hau '06.
- Corresponding expected returns approximately have Ornstein-Uhlenbeck dynamics.
 - ► Average level is higher for less liquid stocks "liquidity premia" in line with empirical literature.
 - ▶ Partially predictable fluctuations like in reduced-form models in asset-management literature.
 - Not caused by mean-reverting fundamentals, but by sluggishness of the trading process.

 Imperial College

Calibrated Example

- Goal: choose model parameters to match main properties of time series data.
- Start with frictionless Bachelier model

$$S_t = (b - \bar{\gamma}sa^2T) + \bar{\gamma}sa^2t + aW_t$$

that obtains for $\beta^1 + \beta^2 = 0$ and $\mathfrak{S} = bT + aW_T$:

- ▶ Match volatility *a* to standard deviation of asset returns.
- Given supply s, choose aggregate risk aversion $\bar{\gamma}$ to match average asset returns.
- Choose mean payoff b to match current asset price.
- Individual risk aversions γ^1, γ^2 and endowment volatilities β^1, β^2 do not matter without frictions.

Calibrated Example ct'd

- ▶ Without frictions: individual risk aversions γ^1, γ^2 and endowment volatilities β^1, β^2 do not matter.
- ▶ With frictions: frictionless equilibrium remains unchanged for $\gamma^1 = \gamma^2$. Size of deviation depends on $|\gamma^1 \gamma^2|$.
- ► Gonon/M-K/Shi: fit to time series for prices *and* volume.
 - Choose quadratic trading costs to match effect of observable bid-ask spreads.
 - ▶ Choose endowment volatilities β^1, β^2 to match empirical "trading volume".
 - \blacktriangleright Choose heterogeneity $|\gamma^1-\gamma^2|$ to match illiquidity discounts observed empirically.

Calibrated Example ct'd

For
$$\gamma^2 = 2\gamma^1$$
:

- Frictionless equilibrium price is decreased far from maturity.
- Same terminal condition, and in turn higher expected returns ("liquidity premia").
- Frictionless equilibrium price and price adjustment:

Calibrated Example ct'd

For
$$\gamma^2 = 2\gamma^1$$
:

- Frictionless equilibrium volatility is 15.
- ▶ Increase due to transaction costs of about 7%. Non negligible effect with realistic trading volume.

Calibrated Example ct'd

- ► Empirical trading volume (left panel) and simulated volume in the calibrated model (right panel).
- ► Level and diffusive behavior reproduced well. But excess skewness and kurtosis in data.

Extensions

- ► Trades due to heterogenous beliefs rather than risk sharing?
 - Work in progress with Nutz and Tan.
- General small-cost expansions?
 - ▶ Work in progress with Shi and Weber.
- More general transaction costs.
 - ► E.g., proportional, square-root impact.
 - ▶ Leads to more complicated FBSDEs. Wellposedness unclear even for short horizons.
 - Gonon/Shi/MK: Numerical solution via deep-learning approach of Han/Jentzen/E '18.
 - Works well only for short time horizons so far.

Extensions ct'd

Asset prices with trading costs $\propto \dot{\varphi}_t^2$ and $\propto \dot{\varphi}_t^{3/2}$:

Extensions ct'd

Volatility corrections trading costs $\propto |\dot{\varphi}_t|^2$ and $\propto |\dot{\varphi}_t|^{3/2}$:

Extensions ct'd

▶ Empirical trading volume (left panel) and simulated volume in the calibrated model with costs $\propto |\dot{\varphi}_t|^{3/2}$ (right panel):

